本书强调基本概念、理论和技能的训练,着重于培养学生运用数学知识解决实际问题的能力。从第一章至第五章,内容主要围绕一元微积分,这部分与第六章的微分方程相互补充,构建起数学的基础体系。第七章探讨多元函数的微积分,进一步扩展了数学的维度。第八章研究无穷级数,这一部分对于理解和应用数学理论至关重要。
本书内容包括矩阵、n维向量、线性方程组、矩阵的特征值和特征向量、二次型等。同时,为方便学生复习迎考,在第八教学周和第十六教学周后分别提供几套往年期中和期末考试真题卷,并提供答案,学生可自我检测,查漏补缺。
本书围绕教学大纲编写而成.在编写的过程中,吸收了国内现有教材的优点,适当地加入了一些线性代数的应用,在方便教师教学和学生自学方面做了尝试.本书知识体系完整,内容编排结构合理,语言简洁明了.本书内容包括行列式、矩阵、向量组和向量空间、线性方程组、矩阵的对角化及二次型、线性代数的一些应用。
本书另一方面是使教材中初等数学部分内容完全符合中等职业学校数学课程标准,且高等数学部分内容也根据实际情况适当调整难度和要求。第2册内容包括圆锥曲线,坐标转换与参数方程,平面向量、复数,数列,极限与连续,导数与微分,导数的应用,积分及其应用等。修订后的第6版教材更注重思政元素的挖掘,增加情境与问题、尝试与发现、想一想、试
本书共分10章,内容涵盖预备知识、极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、空间解析几何、多元函数微分学、二重积分及微分方程。
本套书分为微积分、线性代数、概率论与数理统计三册。
本书内容包括:高等数学、线性代数、概率论与数理统计。
线性代数是代数学甚至整个数学中非常重要的一个分支,是大中专院校理工科相关专业的必修课,也是学习机器学习、计算机图形学、游戏编程等的基础。但是由于线性代数太过抽象,会让许多人学完整门课程也不知其所以然。本书通过Python编程的方式让抽象的知识变得可视化,通过编程将线性代数应用于实践,解决具体的问题,可以帮助读者更好地理